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engine with moving valves and a piston, where the meshing
process must be repeated each timestep. In addition, dueA hybrid random vortex-boundary element method is developed

for the solution of time-dependent incompressible three-dimen- to the Lagrangian nature of the method, convection is
sional internal flow problems. The numerical scheme is grid-free approximated with minimal numerical diffusion, making
within the flow domain and is based on a combination of the Lagran- the scheme an excellent tool for analyzing high Reynolds
gian vortex method to capture the convection and stretch of the

number flows. Vortex methods are also self-adaptive and,vortical field, the random walk method to describe the diffusion
hence, are capable of dynamically concentrating computa-process, and the boundary element method to superimpose a poten-

tial flow on the vortical field such that the normal flux boundary tional elements where significant velocity gradients evolve,
condition is satisfied. The no-slip boundary condition is satisfied such as in regions with high recirculation or in shear layers.
by generating vorticity tiles on solid boundaries, which are subse- Furthermore, vortex methods readily facilitate an intuitive
quently diffused and convected into the flow interior. Additionally, a

and quantitative tool for interrogating ‘‘three-dimensional-boundary condition is devised for the application of fully developed
ity effects’’ in the flow by monitoring vorticity stretch inflow properties at the exit plane. In this paper, the formulation and

the numerical scheme are presented, followed by a parametric study the field. This is an immediate consequence of representing
of the accuracy of the method using the model problem of the flow the Navier–Stokes equations in the velocity–vorticity for-
in a duct with square cross section at Re 5 100. We show that the mulation, where the three-dimensional equations are dis-
method converges to the analytical solution of the problem as the

tinguished from their two-dimensional counterpart by theresolution of the time integration and the discretization are im-
extra vorticity stretch term. Finally, vortex methods areproved, and we discuss the impact of each resolution parameter

on the accuracy. In addition, selected results from the simulation naturally adaptable to massively parallel computing, which
of an impulsively started flow over a cube at Re 5 100 are presented. can be exploited to solve large-scale problems efficiently.
We use the results of this test case to demonstrate that the method Currently, three-dimensional vortex methods display a
captures the effect of sharp edges, parallel and normal to the stream-

few computational difficulties which need to be resolvedwise flow direction, on the flow dynamics. Q 1997 Academic Press

with more vigor. First, the computational cost for evaluat-
ing the vortex element velocities using traditional summa-
tion techniques grows quadratically with the number of1. INTRODUCTION
elements. This imposes a severe limit on the maximum
number of elements that can be used in a simulation. Fortu-Discrete vortex methods are approximation techniques

for the simulation of the unsteady, incompressible, high nately, fast multipole expansion techniques are now avail-
able which achieve near-linear CPU dependence on theReynolds number Navier–Stokes equations in unbounded

or wall-bounded domains. In this approach, the governing number of elements [10, 32]. Nevertheless, physically cor-
rect and numerically accurate vortex element merging al-equations are expressed in the vorticity transport form.

The vorticity field is represented by a collection of vortex gorithms may still be necessary to limit the proliferation
of the number of elements. Second, more general vorticityelements and its evolution is evaluated by tracing the tra-

jectory of the elements, as well as their vorticity vectors, boundary conditions need to be devised to allow for geom-
etries with curved, time-varying surfaces. Finally, the usein the Lagrangian frame of reference.

Vortex methods offer some significant advantages. To of vortex monopoles to discretize the three-dimensional
vorticity field in standard vortex element methods doesbegin with, they are grid-free and thus eliminate the often

tedious task of volumetric meshing of complex three- not implicitly guarantee the solenoidality of the discretized
vorticity in space and time. One attempt to correct thisdimensional domains. This advantage is even more pro-

nounced in situations where moving boundaries are en- problem is the periodic redistribution or regridding of the
field vorticity over the vortex elements, such that somecountered, such as in the case of an internal combustion
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measure of the divergence of vorticity is imposed [60]. tests are necessary to verify its success [23]. Deterministic
techniques that maintain the grid-free nature of the vortexAlthough this method appears to stabilize the solution,

especially of the Euler equations, it does not represent a method have been proposed as well. Degond and Mas-
Gallic [19] introduced a vorticity exchange mechanism be-fundamental remedy to the problem. To this end, a new

derivation has recently been proposed which is based on tween the elements by replacing the Laplacian in the diffu-
sion process with a smoothed integral and discretizing thethe canonical Hamiltonian formulation for the incompress-

ible flow [11, 49]. The Hamiltonian structure of the flow latter over the elements. The accuracy of the method has
been verified numerically and its stability proven for posi-is described in terms of a variable that is analogous to a

vortex dipole [17] and preserves all invariants of the three- tive kernels. One disadvantage of the method is that higher
order kernels may not be positive everywhere in the do-dimensional Euler equations, as well as maintains the sole-

noidality of the velocity and vorticity [11, 49]. However, main and the solution may become unstable [21]. Fishelov
proposed an alternative approximation for the Laplacianthe singularity in the velocity kernel of a vortex dipole is

one order higher than that of a vortex monopole, which of the diffusion equations by directly differentiating the
vorticity cutoff function and by convolving the latter withimposes a more severe condition on the stability of the

method. Furthermore, the extension of the method to wall- the vorticity distribution [21]. A mathematical proof for
the consistency and stability of this method was also given,bounded flows is nontrivial.

In an unbounded domain, the velocity at a point is ex- but further numerical verification is needed. A different
school of thought treats the diffusion of vorticity as thepressed in terms of the positions and strengths of all vorti-

ces according to the familiar Biot-Savart law [3]. However, convective transport of the vorticity gradients, whereby
the vortex elements travel grid-free by a ‘‘diffusion veloc-the velocity kernel is singular and must be regularized to

avoid numerical blowup as the vortex elements approach ity,’’ in addition to the regular convection velocity [20, 37,
48]. One disadvantage of this approach is the need toeach other. Chorin introduced the concept of a ‘‘vortex

blob’’ by removing the velocity singularity at the center. evaluate the vorticity gradients accurately.
The random vortex method was first applied to two-This was later interpreted as the convolution of the singular

vortices with a smoothing function, or the use of finite area dimensional wall-bounded flows by Chorin [12]. In this
case, the vortical component of the velocity in the domainelements whose vorticity remains concentrated within a

finite size core radius and decays rapidly outside it [13]. is modified by a potential flow such that the proper normal
flux is admitted at the boundary. To solve the potential flowThe convergence and the accuracy properties of the two-

and three-dimensional vortex blob method have been ob- problem, the method of images and Schwarz Christoffel
transformations have been implemented for simple geome-tained for unbounded domains [4, 6–8, 31, 33, 44]. In addi-

tion, Beale and Majda proposed a methodology for con- tries [27, 28, 47], whereas finite element methods have been
applied for complex geometries [45]. The no-slip boundarystructing core functions with arbitrarily high spatial order

[9]. A rigorous numerical verification was also provided condition is imposed by continuously generating vortex
sheets at the wall with sufficient strength to zero out thefor conditions under which the proposed core functions

produce accurate solutions. Recently, Hou [35] and Hou tangenital velocities [15, 28, 42, 45, 50]. Within a thin layer
near the boundary, where normal gradients are strongeret al. [36] presented stable solutions with point vortex meth-

ods by introducing a novel desingularization technique for than those in the wall direction, the sheets are convected
and diffused according to the Prandtl approximation ofthe velocity kernel.

In the context of Lagrangian vortex methods, the diffu- the Navier–Stokes equations. Beyond the layer the sheets
are converted into vortex elements. A rigorous mathemati-sion process may be approximated stochastically or using

a deterministic approach. In the stochastic approach, the cal proof for the consistency of the vorticity generation
scheme is not available yet; however, the consistency ofsimilarity between the Green function for the diffusion

equation and the Gaussian probability distribution func- the approximation of the heat equation with boundaries
using a similar approach has been established by Hald [34].tion is exploited to approximate viscous diffusion by the

random walk method, in which a Wiener process is added Furthermore, numerous computational experiments verify
the robustness of the method in solving the Prandtl equa-to the motion of each vortex element [13, 15]. This method

is widely used due to its simplicity and ease of implementa- tions [12, 14, 50]. Additionally, a comprehensive set of
comparisons with experimental data have been compiledtion in flows with solid boundaries. However, as verified

by various numerical experiments, the obtained solutions for flow in planar geometries where available [28, 29, 47,
56]. More recently, an extended vortex-finite elementmay exhibit relatively high levels of noise and necessitate

the use of a large number of elements and a small timestep method was used to successfully emulate a flow visualiza-
tion experiment studying the piston-induced intake pro-[30, 41, 46, 53]. Recently, a new smoothing technique with

superior accuracy and convergence properties has been cesses in an axi-symmetric port-cylinder geometry with a
valve [26].proposed for the random walk method; however, further
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Three-dimensional inviscid flows were first simulated and a potential component obtained from the solution of
a three-dimensional Neumann problem over the domain,using a vortex filament approach [43], which is an excellent

candidate for solving the Euler equations. In this model, such that the correct normal flux boundary condition is
imposed on the domain boundary.a collection of filaments, each forming a closed vortex

line and segmented along the vorticity vector, is used to The Neumann problem is solved by the boundary ele-
ment method, assuming piecewise-quadratic variation ofapproximate the initial vorticity field. By construction,

Kelvin’s theorem for the conservation of circulation is im- the potential and its normal flux across each boundary
element. The no-slip boundary condition is satisfied byplicitly satisfied in this scheme. Beale and Majda proposed

extending the notion of a two-dimensional vortex element generating vortex tiles at the boundaries [42]. Within a
thin prespecified region near the boundary, the tiles con-to a three-dimensional element with spherical core func-

tion and provided mathematical proof for the existence of vect and diffuse in the Lagrangian frame of reference ac-
cording to a boundary-layer-like approximation [14, 22].solutions for short times [6]. However, the method was

handicapped by the fact that velocity gradients, used to Beyond this region, the tiles are converted to spherical
vortex elements such that the volumetric vorticity is con-compute vorticity stretch, were obtained by a finite differ-

ence approximation—thus contradicting the spirit of grid- served. (Note: throughout this paper, by the ‘‘Prandtl equa-
tions’’ we imply the equations governing the flow very closefree Lagrangian techniques. Anderson and Greengard alle-

viated this problem by differentiating the regularized ker- to solid walls using a boundary-layer-like approximation of
the vorticity transport formulation and simplified by thenel for the velocity in the Biot–Savart integral directly to

obtain the regularized kernel for the velocity gradients [1]. assumption that vorticity stretch in this layer is negligible.)
At present the solid walls are discretized by planar rectan-The convergence of the latter was subsequently proved by

Beale [4]. This approach and its variants have been used gular vortex tiles and boundary elements; the extension to
the more general quadrilateral elements will be presentedquite extensively in three-dimensional unbounded do-

mains [38–40, 59, 60], and simulation results have been in future applications. To improve the accuracy and flexi-
bility of the proposed method, we have developed a novelcompared with exact solutions or experiments wherever

possible. (See [60] for a review of the current state of the technique to remove a spike in the boundary potential that
arises from the solution of the ill-posed internal Neumannthree-dimensional vortex methods in unbounded do-

mains.) problem [25]. We have also developed a regularized formu-
lation for the accurate evaluation of the potential velocityThe two-dimensional sheet generation algorithm was

first extended to three dimensions by Chorin, where he gradients at the vortex elements [25]. In addition, we have
formulated an extended Prandtl solution algorithm thatcombined the latter with a vortex stick method to simulate
allows the interaction among unequally sized tiles. Thisthree-dimensional high Reynolds number flow over a flat
is imperative for tile solutions that involve expanding orplate [14]. Later, Fishelov combined Chorin’s tile genera-
shrinking boundaries, such as the cylinder of an engine,tion scheme [14] with the vortex method of Anderson
where the size of the tile generated at one timestep isand Greengard [1] to study the flow over a flat plate and
invariably different from that at the next timestep. Wetransition to turbulence [22]. Both Chorin and Fishelov
have also developed a new formulation for imposing theapplied the random walk method to approximate diffusion,
fully developed flow condition at the exit plane.and the method of images to impose the zero flux condition

We conduct a parametric study to examine the accuracythrough the wall.
of the vortex-boundary element method, using the exampleIn this paper, expanding upon the ideas introduced
of flow in a duct with square cross section at Re 5 100,above, we present a hybrid random vortex-boundary ele-
and we compare the results with the exact solution atment method for the grid-free simulation of the time-de-
the exit plane. We also provide selected results from anpendent incompressible Navier–Stokes equations in three-
example of impulsively started flow over a cube atdimensional internal flow configurations. In this approach,
Re 5 100 and compare them with available data.the field vorticity is discretized using a collection of spheri-

cal vortex elements with second-order core function. Con- 2. SCHEMATIC DESCRIPTION
vection is evaluated by tracking the trajectory of the ele-
ments in the Lagrangian frame of reference. Diffusion is The random vortex-boundary element method may best
obtained by the random walk method. Additionally, the be introduced using a conceptual description of the flow
elemental vorticity vectors are adjusted to account for the dynamics near solid boundaries. The computational field
stretch of vorticity, which is caused by the interaction be- is decomposed into an ‘‘interior domain,’’ where the

Navier–Stokes equations are applied, and a thin user-tween the local vorticity vector and the velocity gradients.
The velocity and its gradients are expressed as a superposi- specified region in the vicinity of the boundary surface

called the ‘‘numerical boundary layer,’’ where Prandtl-liketion of a vortical component evaluated by the Biot–Savart
law, using the method of Anderson and Greengard [1]; approximations are utilized.
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Initially, there is no vorticity in the field and a potential where x 5 (x, y, z) is the position vector in Cartesian
coordinates normalized by a reference length, L; u(x, t) 5flow is imposed on the geometry such that the normal flux

through the solid boundaries is zero. This in turn induces (u, v, w) is the velocity vector normalized by a characteristic
speed, U; t is the time normalized by L/U; v(x, t) 5a slip velocity at the walls, which is annulled by creating

vortex tiles on the walls with surface vorticity equal to the (gx , gy , gz) is the vorticity vector normalized by U/L;
Re 5 UL/n is the Reynolds number, and n is the kinematicslip velocity. The diffusion of these tiles towards the do-

main interior marks the end of the first timestep. If a tile viscosity. At the boundary surfaces, the velocity is ex-
pressed in terms of the local orthogonal coordinate systemtraverses the numerical boundary layer, it is converted

into a spherical vortex element that has a core radius and t-r-n, where n 5 (nx , ny , nz) is the unit outward normal,
and t 5 (tx , ty , tz) and r 5 (rx , ry , rz) are the unit tangentsvolumetric vorticity vector equal to the length and volu-

metric vorticity vector of the tile, respectively. In subse- to the boundary. Note that, as in most time dependent
problems, the velocity in Eq. (3.4) is not well determinedquent timesteps, the vortex elements in the interior are

convected, stretched, and diffused, according to the on the exit boundary. This issue will be addressed in more
detail later.Navier–Stokes equations—subject to the proper normal

flux boundary condition. At the same time, the tiles are In what follows, the solution of the equations above will
be obtained by decomposing the computational field intoconvected in the numerical boundary layer according to

the Prandtl equations. As a result of the motion of the an interior domain and a boundary domain. The interior
domain is discussed in Section 3.1 and involves the solutionvortex elements and tiles, a net slip velocity is induced on

the solid boundaries, which is canceled by generating vor- of Eqs. (3.1)–(3.3) in conjunction with the normal flux
boundary condition. Since the tangential velocity boundarytex tiles there. Finally, the conclusion of each cycle is

marked by the diffusion of all vortex tiles—old and new— condition is not strictly enforced for the interior domain,
the walls experience slip velocities. The no-slip boundaryinto the field.

During the course of the computation, the tiles may condition is applied in the context of the boundary domain,
which is discussed in Section 3.2. In this section, the processjump out of the domain due to the random walk, in which

case they are simply reflected back into the field. On the of vorticity generation at the wall and its evolution within
the thin numerical boundary layer are explained.other hand, should the vortex elements jump out of the

domain or into the numerical boundary layer, they are
eliminated altogether. Stationary state is achieved when 3.1. Interior Domain
the total number of vortex elements is statistically invari-

Equations (3.1) are decomposed using a viscous splittingant, i.e., when the total number of vortex tiles converted
scheme whereby, within each timestep, the evolution ofinto vortex elements is balanced by the total number of
vorticity is first obtained from the Euler equations andvortex elements leaving the computational domain.
is then modified according to the diffusion equation [5].It must be emphasized here that the ‘‘numerical bound-
Consequently, the Navier–Stokes equations for the inte-ary layer’’ is not the numerical solution to the physical
rior domain are approximated usingboundary layer problem; it is a very thin layer within which

vorticity is better approximated by vortex tiles than by
elements. ­v

­t
1 u ? =v 5 v ? =u, x [ D, (3.1.1)

3. NUMERICAL FORMULATION ­v

­t
5

1
Re

=2v, x [ D, (3.1.2)

The equations of motion of an incompressible fluid
= ? u 5 0, x [ D, (3.1.3)within a three-dimensional wall-bounded domain D and

with boundary surfaces ­D are expressed in the vorticity v(x, t) 5 =`u, x [ D, (3.1.4)
transport form of the Navier–Stokes equations as

u(x, t) 5 u ? n, prescribed, x [ ­D, (3.1.5)

u(x, t 5 0) 5 uo(x), prescribed, x [ D. (3.1.6)­v

­t
1 u ? =v 5 v ? =u 1

1
Re

=2v, x [ D, (3.1)

For unbounded domains, solutions obtained by Eqs.
= ? u 5 0, x [ D, (3.2)

(3.1.1)–(3.1.4) have been proved to converge, in space and
time, to those of the Navier–Stokes and convergence isv(x, t) 5 =`u, x [ D, (3.3)
shown to improve at a rate that is proportional to the

u(x, t) 5 (u ? t, u ? r, u ? n), prescribed, x [ ­D, (3.4)
Reynolds number [5]. (The tangential boundary condition
in Eq. (3.4) is not enforced explicitly in the solution of theu(x, t 5 0) 5 uo(x), prescribed, x [ D, (3.5)
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interior domain. However, it is enforced explicitly in the dxi

dt
(x, t) 5 ui(xi , t), xi(x, to) 5 xi,o , (3.1.11)boundary domain and the vorticity exchange across the

boundary between the interior and the wall regions is used
to link the two solutions.) dG̃i

dt
(xi , t) 5 G̃i(xi , t) ? =ui(xi , t), G̃i(xi , to) 5 G̃i,o ,In the equations above, the velocity (and its gradients)

are decomposed into a vortical field, ug(=ug), and a poten-
i 5 1, ..., NV , (3.1.12)tial component, uP(=uP), according to the Helmholtz de-

composition rule:
where xi describes the trajectory of the ith vortex element
and to is the time at which it is introduced into the domain.u 5 ug 1 uP . (3.1.7)
Note that to is not necessarily zero since vortex elements
may be added to the field at any time during the flowEach velocity component can then be constructed based
evolution as a result of vorticity generation. Equationspurely on vector identities and kinematic relationships,
(3.1.11) and (3.1.12) are integrated in time to any order ofsuch that the continuity equation (3.1.3) and the normal
accuracy to obtain the flow evolutionflux boundary condition (3.1.5) are satisfied implicitly. The

velocity gradients are subsequently evaluated by differenti-
ating the expressions for the velocities. x*i (x, tk11) 5 xi(x, tk) 1 F[ui(xi , tk)] Dt, (3.1.13)

The grid-free solution of the resulting Euler equations is
discussed in Section 3.1.1, and the solution of the remaining G̃i(xi , tk11) 5 G̃i(xi , tk)
diffusion equation is explained in Section 3.1.2. The formu-
lations for obtaining the vortical and the potential veloci- 1 F[G̃i(xi , tk) ? =ui(xi , tk)] Dt,
ties and their gradients are described in Sections 3.1.3 and

k 5 0, 1, ...; i 5 1, ..., NV , (3.1.14)3.1.4, respectively.

where Dt 5 (tk11 2 tk) is the integration timestep and3.1.1. Euler Equation
F[?] represents the time integration scheme. Note that the

The Euler equations, as defined by (3.1.1) and (3.1.3)– asterisk in Eq. (3.1.13) implies the intermediate step in the
(3.1.6), in conjunction with (3.1.7), can be expressed in viscous splitting algorithm and is not related to the F[?]
their equivalent Lagrangian formulation as integration scheme. We experimented with the second-

order modified Euler and the fourth-order Runge–Kutta
methods and selected the former for its economy and ac-dx

dt
(x, t) 5 u(x, t), x(x, to) 5 xo , (3.1.8)

ceptable accuracy.
dv

dt
(x, t) 5 v(x, t) ? =u(x, t), v(x, to) 5 vo , (3.1.9) 3.1.2. Diffusion Equation

The Green function for the diffusion equation (3.1.2) is
where x prescribes the trajectory of a fluid element initially given by Gt(x, t) 5 (4ft/Re)23/2 exp(2uxu2/(4t/Re)), which
at xo and with vorticity vo . Equation (3.1.8) prescribes the is also the three-dimensional Gaussian probability distribu-
transport of vorticity associated with a fluid element along tion function with zero mean and variance equal to 2t/Re .
its trajectory, while Eq. (3.1.9) governs the vorticity stretch. Accordingly, the diffusion process within each timestep,

We begin the solution of (3.1.8) and (3.1.9) by discretiz- Dt, can be approximated stochastically if each of the vortex
ing the continuous vorticity field into a collection of NV elements is repositioned by a random displacement as
vortex elements, each centered at xj with element volume
DVj and vorticity vector vj ,

xi(x, tk11) 5 x*i (x, tk11) 1 hi(Dt),
(3.1.15)

k 5 0, 1, ...; i 5 1, ..., NV ,
v(x, t) 5 ONV

j51
G̃j(t)d(x 2 xj), (3.1.10)

where hi 5 (hx , hy , hz)i are random variables in each
of the three coordinate directions, selected independentlywhere G̃j(t) 5 vj(t) DVj is the volumetric vorticity and
from a Gaussian distribution with zero mean and varianced(?) is the Dirac delta function. Combining the discretized
equal to 2Dt/Re . The rate of convergence of the randomvorticity distribution (3.1.10) with (3.1.8) and (3.1.9) yields

the grid-free solution of the Euler equations as a pair of walk method is proportional to 1/ÏNVRe [46, 53] and the
solution, in terms of the vorticity, can be rather noisy.vectorial ordinary differential equations for the NV ele-

ments: However, since the random walk approximates the diffu-
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sion of vorticity, its integral—the velocity distribution—is where Ks(x) 5 K(x) f(uxu/s), f(r) 5 4f er

0 g(r9)r92 dr9 5
tanh(r3), and Ks(0) 5 0.expected to be smooth.

Equation (3.1.20) can now be differentiated analytically
3.1.3. Vortical Component in Eulerian coordinates to obtain the vortical velocity gra-

dients [1],The vortical velocity is expressed in terms of the curl of
a solenoidal vector stream function as

=ug(x, t) 5 ONV

j51
=Ks(x 2 xj)`G̃j(t), (3.1.21)ug 5 =`C. (3.1.16)

Taking the curl of (3.1.16), substituting in (3.3), and
applying the assumption that C is divergence-free yields =Ks(x) 5 S=x

x
2 3

=uxu
uxu DKs(x) 2 x

=uxu
uxu

gs(x),
the Poisson equation

=Ks(0) 5 2
=x
3s3 g(0).=2C 5 2v. (3.1.17)

The solution of Eq. (3.1.17) in free space is given by 3.1.4. Potential Component

The potential velocity at any point in the domain is
C(x, t) 5 E G(x 2 x9)v(x9, t) dV(x9), (3.1.18)

expressed in terms of the gradient of a scalar function as

where x9 is the location of the volume element dV(x9), uP 5 2=F. (3.1.22)
G(r) 5 1/4fr is the three-dimensional Green function for
the Poisson equation, and r 5 ux 2 x9u. Combining (3.1.16) Substituting (3.1.7) and (3.1.22) in the continuity equa-
and (3.1.18) yields the Biot–Savart law for the vortical tion yields the internal Neumann problem,
velocity, ug ,

=2F(x) 5 0, x [ D, (3.1.23)
ug(x, t) 5 E K(x 2 x9)`v(x9, t) dV(x9), (3.1.19)

q(xo) 5 2uP(xo) ? n

5 2(u(xo) 2 ug(xo)) ? n, xo [ ­D, (3.1.24)where K(x) 5 2x/4f uxu3 is the three-dimensional velocity
kernel. Given the vorticity distribution (3.1.10), the singu- E

­D
q(xo) dS(xo) 5 0, xo [ ­D, (3.1.25)larity in the velocity kernel may result in numerical instabil-

ity as elements approach each other. To remove the singu-
larity, we smooth out the vorticity associated with each where q(xo) 5 =F(xo) ? n is the normal flux at the boundary
element by implementing the vortex ‘‘blob’’ regularization and S(xo) is the surface area of the boundary.
technique, where the delta function in (3.1.10) is replaced The boundary condition (3.1.24) incorporates the effect
by a spherical core function gs (x) 5 (1/s3)g(uxu/s) with of the vortical velocity component on the total flux at the
core radius s. The criteria for constructing proper core boundaries, and constraint (3.1.25) ensures that the net
functions with arbitrary spatial order, as well as the neces- flux into the domain is zero. Note that the solution for the
sary conditions for maintaining convergence and stability internal Neumann problem is unique only up to a constant
are available in the literature [4, 6, 7, 9]. In our computa- in F; nevertheless, the velocity and its gradients, which are
tions we applied the second-order core function g(x) 5 of interest to us, are defined uniquely. The nonunique
(3/4f) [1 2 tanh2(uxu3)]—selected from a list of functions nature of the potential distribution is analogous to that of
made available by Beale and Majda [9]. We also experi- the pressure distribution in the primitive variable formula-
mented with g(x) 5 (3/4f) exp(2uxu3) from the same list tion where the pressure gradient, and not the pressure, is
and found the distribution to be spurious in the vicinity of of relevance to the computation.
the core center, due to machine precision, which often led To preserve the grid-free nature of the vortex element
to numerical instability. method, the Neumann problem is solved by the direct

The discrete, regularized vortical velocity is obtained by boundary element method which converts the differential
substituting the smooth vorticity distribution into Eq. equation (3.1.23) within the volume into an integral equa-
(3.1.19), tion on the surface. We begin the solution of the Neumann

problem by decomposing the boundary surface into a
union of rectangular elements and by assigning piecewise-ug(x, t) 5 ONV

j51
Ks(x 2 xj)` G̃j(t), (3.1.20)

quadratic variation of the potential and its normal flux
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across each element. Since the normal flux is multivalued tions, the potential velocity and its gradients may be evalu-
ated anywhere in the domain by directly differentiatingon the boundary edges and corners, we implement two

separate global node numbering systems for F and q. The Eq. (3.1.26). However, the integrals contain O(r23) and
O(r24) singularities, respectively, and the accuracy of thefirst is used to discretize the potential distribution over NF

global nodes in the regular sense, while the second utilizes integral evaluations deteriorates significantly as x ap-
proaches the boundary. The accurate evaluation of thea multiple-node discretization approach assigning as many

nodes to a point on an edge (or a corner) as there are potential velocity and its gradients is especially critical near
the boundary, because vorticity is generated at the wallssurfaces sharing the edge (or the corner)—to describe the

normal flux over Nq global nodes [25]. The discrete bound- and its evolution is influenced by the potential compo-
nent substantially.ary integral equation yields [2]

A regularization technique is available which reduces
the order of the integrand singularity for the velocity [57,

aF(x) 5 OM
k51
F2E

­Dk

Fk(xo)=G(xo , x) ? n dSk(xo) 58] and its gradients [25] by one and two, respectively, in
exchange for the evaluation of the tangential derivatives
of the boundary potential and its normal flux,1 E

­Dk

qk(xo)G(xo , x) dSk(xo)G, (3.1.26)

xo [ ­D, x [ D,
uPj

(x) 5 OM
k51
FE

­Dk

h(jknj 2 hktj)Fk,j(j, z)

where M is the number of rectangular elements, G is the
1 (zknj 2 hkrj)Fk,z(j, z)

three-dimensional Green function as defined earlier, and
a is the normalized solid angle,

2 (jktj 1 zkrj 1 hknj)qk(j, z)j
dSk

4fr3
k
G, (3.1.27)

­uPj
(x)

­xl
5 OM

k51
FE

­Dk

h(jk(njtl 1 tjnl)
a 55

1, x [ (D \­D),

2 OM
k51

E
­Dk

=G(xo , x) ? n dSk(xo), x [ ­D,

0, x Ó D,
1 zkrjnl 1 hk(njnl 2 tjtl))Fk,jj(j, z)

1 (zk(njrl 1 rjnl) 1 jktjnl 1 hk(njnl 2 rjrl))Fk,zz(j, z)

while Fk(xo) 5 o8
i51 Ii

k(j, z)FpF
k(i)(xo) and qk(xo) 5 1 (jknjrl 1 zknjtl 2 hk(tjrl 1 rjtl))Fk,jz(j, z)

o8
i51 Ii

k(j, z)qpq
k(i)(xo). I(?) is the quadratic interpolation

1 (jk(njnl 2 tjtl) 2 zkrjtl 2 hk(njtl 1 tjnl))qk,j(j, z)function, and j ; jk 5 t k ? (xk
o 2 x) and z ; zk 5

rk ? (xk
o 2 x) are orthogonal coordinates local to element 1 (zk(njnl 2 rjrl) 2 jktjrl

k; pF
k(i) and pq

k(i) represent pointers from the local node
i of element k to the corresponding global node numbers

2 hk(njrl 1 rjnl))qk,z(j, z)j
dSk

4fr3
k
G, ( j, l) 5 1, 2, 3,

for F and q, respectively. Coalescing x with each of the
NF collocation nodes and carrying out the singular integra- (3.1.28)
tions in (3.1.26) sets up a linear system of equations for

where j and l indices indicate direction with respect to thethe unknown potential at the NF nodes. The matrix repre-
global coordinate system and follow the Einstein rule,senting the linear system is singular and reflects the non-
(?),r represents differentiation with respect to xo in the rthuniqueness of the potential distribution in discrete form.
direction, and hk 5 nk ? (xk

o 2 x)—not to be confused withTo obtain a unique solution, the potential at an arbitrary
the random walk displacement. The first- and second-de-collocation point m may be set to zero and the matrix
gree tangential derivatives of the normal flux and the po-inverted by the method of elimination. However, since
tential are obtained by directly differentiating the corre-collocation techniques are sensitive to grid distribution, the
sponding interpolation functions. For example, the firstresulting boundary potential suffers from a highly localized
derivative of the potential in the local j direction is givendiscretization error—manifesting itself as a spike at m—
by Fk,j(xo) 5 O8

i51
(­Ii

k(j, z)/­j)FpF
k(i)(xo), while the deriva-which deteriorates the accuracy of the potential solution

tive of the latter in the local z direction is given by Fk,jzin the interior substantially. We alleviate this problem by
(xo) 5 O8

i51
(­2Ii

k(j, z)/­j­z)FpF
k(i)(xo).adding a pseudo-Lagrange multiplier to the system of equa-

tions, which equilibrates the imbalance between the left
3.2. Boundary Domain

and right sides of the equations by scaling and redistribut-
ing the residual errors on an area-weighted basis [25]. In this section the processes of vorticity generation and

its evolution within the numerical boundary layer ex-Subsequent to the solution of the linear system of equa-
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tending over a flat rectangular wall are described. The
algorithm is applied to all solid walls simultaneously.
Fishelov’s [22] implementation using tiles of equal size is
herein extended to the case of tiles with arbitrary size,
which is significant in problems dealing with expanding or
shrinking boundaries. In what follows, all variables are
defined with respect to the local coordinate system, z is
assigned normal to the plate and into the flow interior,
and z 5 0 represents the wall surface.

3.2.1. No-Slip at the Wall

The distribution of vorticity in the interior and the appli-
cation of the normal flux boundary condition at the walls
induce a tangential velocity (u1, v1), which is gener-
ally different from the prescribed boundary condition
(u2, v2)—being (0, 0) for a stationary wall. Such a velocity
jump across the wall is equivalent to an infinitely large
vorticity along an infinitesimally thin surface, centered at
the wall,

ĝ(x, t) 5 (ĉx , ĉy , ĉz) 5 (2(v1 2 v2), (u1 2 u2), 0), (3.2.1)

where limDzR0, vRy[v(x, t)Dz] R ĝ(x, t) [42]. In what
follows, for the lack of a better terminology, we will
call ĝ(x, t) and its discretized form ‘‘surface vorticity.’’
Equation (3.2.1) defines the mechanism for satisfying the

FIG. 1. Schematic diagram of a typical boundary domain.no-slip condition at the wall. ĝ(x, t) is now discretized
by carpeting the wall with a set of rectangular vortex
tiles with sides ht

xi
and ht

yi
and with surface vorticity

g(xi , yi , 0, t) at the center, (xi , yi , 0). g(xi , yi , 0, t) is
L(xi , xj , ht

xi
, hb

xj
)in turn linked to the velocity jumps at the center of the

boundary elements, which are themselves retrieved from
the Navier–Stokes solution. The tile distribution is al-
lowed to be different from that of the boundary elements, 5 1 2

Max Suht
xi

2 hb
xj

u

2
, Min Suxi 2 xju,

ht
xi

1 hb
xj

2 DD1
ht

xi
2 hb

xj

2
ht

xiso that a tile may lie entirely within one or ‘‘shadow’’ over
multiple boundary elements. (Figure 1 is the schematic of
a typical solid boundary domain.) The surface vorticity and MB is the number of boundary elements on the wall,
of a tile is then obtained by summing the area-weighted each centered at (xj , yj , 0) with sides hb

xj
and hb

yj
. The

jump contributions from all boundary elements that are velocity overbars denote the area-averaged values over the
shadowed by the tile, boundary elements. Note that for a uniform distribution

of tiles, L(xi , xj , ht
xi

, hb
xj

) is reduced to the familiar form
of L(xi , xj , hx) 5 1 2 Min(uxi 2 xju, hx)/hx [22, 50].cx(xi , yi , 0, t)

To obtain a finer discretization of the flow in the direc-
tion normal to the wall, each tile is split into NS,i 55 2 OMB

j51
(v1 2 v2)jL(xi , xj , ht

xi
, hb

xj
)L( yi , yj , ht

yi
, hb

yj
),

(ug(xi , yi , 0, t)u/cmax 1 0.5) stacks of tiles if g(xi , yi , 0, t)
exceeds a predefined maximum surface vorticity, cmax [22,(3.2.2)
28, 29, 50]. The geometric attributes of the new tiles are

cy(xi , yi , 0, t) identical to those of the original one, while their surface
vorticity values are given by g(xi , yi , 0, t) 5 g(xi , yi , 0, t)/
NS,i . In the present work, we assign the inverse of cmax as5 OMB

j51
(u1 2 u2)jL(xi , xj , ht

xi
, hb

xj
)L( yi , yj , ht

yi
, hb

yj
), (3.2.3)

the user-specified parameter and call it the ‘‘boundary layer
resolution parameter,’’ BLRP, owing to the fact that higher
values of BLRP are expected to improve the resolutionwhere
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in the normal direction to the wall. The choice of BLRP dx

dt
(x, t) 5 u(x, t), x(x, to) 5 (x, y, 0, to), (3.2.8)depends on how complicated the flow near the boundary

is. However, since a higher value of BLRP implies a larger
number of vortex elements in the field, computational cost dv

dt
(x, t) 5

1
Re

­2v

­z2 (x, t), v(x, to) 5 v(x, y, 0, to). (3.2.9)
is also a factor in selecting a suitable value.

Finally, the discrete no-slip boundary condition is satis-
We begin the solution of Eqs. (3.2.8) and (3.2.9) byfied by generating the discrete vorticity at the wall,

discretizing the continuous vorticity within the layer into
a collection of NT vortex tiles, centered at xi and with
surface vorticity g̃(xi , t):g̃(x, y, 0, t) 5 ONT

i51
g̃(xi , yi , 0, t)b(x, xi , ht

xi
)b(y, yi , ht

yi
),

(3.2.4)

v(x, t) 5 ONT

i51
g̃(xi , t)b(x, xi , ht

xi
)b(y, yi , ht

yi
)d(z 2 zi).

where b(x, xi , hxi
) 5 [s(x 2 (xi 2 hxi

/2)) 2 s(x 2 (xi 1
(3.2.10)hxi

/2))], s is the Heaviside step function, and NT is the total
number of vortex tiles.

Combining (3.2.10) with (3.2.8) and (3.2.9) yields the
3.2.2. Prandtl Equation grid-free tile solution within the numerical boundary layer,

Once vorticity is generated at the wall, its evolution
x*i (tk11) 5 xi(tk) 1 u(xi , tk) Dt, (3.2.11)within the numerical boundary layer, Db , is approximated

by the equations [14, 22]
zi(tk11) 5 uz*i (tk11) 1 hi(Dt)u, k 5 0, 1, ...; i 5 1, ..., NT ,

(3.2.12)­v

­t
1 u ? =v 5

1
Re

­2v

­z2 , x [ Db , (3.2.5)
where xi 5 (xi , yi , zi) denotes the tile trajectory xi in the

= ? u 5 0, x [ Db , (3.2.6) current context and is predicted by applying the first-order
Euler time integration, which has been demonstrated to
be sufficiently accurate in this case [50]. The asterisk per-v(x, t) 5 (gx , gy , gz) > S2

­v
­z

,
­u
­z

, 0D, x [ Db , (3.2.7)
tains only to the z direction, implying that viscous diffusion
is in the direction normal to the wall. Furthermore, tou(x, t 5 0) 5 uo(x), x [ Db ,
simulate diffusion from the wall into the domain interior,

u(x, y, z 5 0, t) 5 (0, 0, 0), u(x, y, z 5 b, t) 5 (Uy , Vy , 0), any tile that jumps below the wall is reflected back into
the field [50].

For a given vorticity distribution within the layer, the cor-where b is a user-specified numerical boundary layer
responding u and v velocity components at a point are de-thickness to be discussed later, and (Uy , Vy , 0) is the
rived by directly integrating the approximate definitions forvelocity at the edge of the boundary layer as seen by
gy and gx , respectively. In this formulation, the boundarythe wall. Note that vorticity stretch is assumed negligible
conditions are satisfied by construction. The w componentwithin the boundary layer and is omitted from the
is obtained by satisfying the continuity equation (3.2.6):equations. This assumption may be questionable, since

the stretch term is in the same order as the convective
term. We have, however, experimented with equations u(x, t) 5 Uy(x, y, b, t) 2 Eb

z
gy(x, y, z9, t) dz,9 (3.2.13)

that contain the stretch term and have found the solution
to be numerically unstable. (Our experience corroborated v(x, t) 5 Vy(x, y, b, t) 1 Eb

z
gx(x, y, z9, t) dz9, (3.2.14)

Chorin’s findings [16].) We suspect that poor or noisy
tile discretization of the velocity gradients causes an

w(x, t) 5 2­x Ez

0
u(x, y, z9, t) dz9

unphysical growth of the vorticity in the boundary layer,
which eventually leads to blowup. Since b is in practice

2 ­y Ez

0
v(x, y, z9, t) dz9. (3.2.15)small and the tiles jump into the interior in a few

timesteps, it seems reasonable to ‘‘postpone’’ the effect
of stretch until the tiles are converted to vortex elements. The discrete tangential components of the tile convective

velocities in (3.2.11) are obtained by substituting the dis-Therefore, we neglect the stretch term to maintain numer-
ical stability. crete vorticity distribution (3.2.10) in Eqs. (3.2.13) and

(3.2.14), and area-averaging the results at the tile centersApplication of viscous splitting to the Lagrangian equiv-
alent of (3.2.5) yields (xi , yi , zi):



84 GHARAKHANI AND GHONIEM

vorticity G̃(x, t) 5 g̃(x, t)ht
xht

y and with core
u(xi , t) 5 Uy(xi , yi , b, t) 2

1
2

c̃y(xi , t) radius s 5 Max(ht
x , ht

y)—linking the vorticity between the
interior and the boundary domains.

The criterion for selecting the numerical boundary layer
2 ONT

j51
j?i

c̃y(xj , t)wj(xi , yi)s(zj 2 zi), (3.2.16a)
thickness b is artibrary but is normally taken to be some
factor of the standard deviation of the random walk,
b 5 BLTCÏ2Dt/Re , so that the tiles will jump into the

v(xi , t) 5 Vy(xi , yi , b, t) 1
1
2

c̃x(xi , t) flow interior in a few timesteps with relatively high proba-
bility [22, 45]. Note that Re is the global Reynolds number
as defined earlier and must not be confused with the local

1 ONT

j51
j?i

c̃x(xj , t)wj(xi , yi)s(zj 2 zi), i 5 1, ..., NT , Reynolds number, which is based on the tile dimensions.
BLTC is a user-defined ‘‘boundary layer thickness coeffi-

(3.2.16b) cient,’’ which is recommended to be in the range of
1.0 # BLTC # 3.0 and is usually set at 1.5. We will show

where wj(xi , yi) 5 L(xi , xj , ht
xi

, ht
xj

)L(yi , yj , ht
yi

, ht
yj

). Simi- in our numerical experiments that the solution is sensitive
larly, the normal velocity component is obtained from to the choice of BLTC—at least at lower Reynolds
Eq. (3.2.15), numbers.

Within the numerical boundary layer, Dt is constrained
by the requirement that all tiles reside within their ownw(xi , t) 5 2

(I1
x 2 I2

x )
ht

xi

2
(I1

y 2 I2
y )

ht
yi

, i 5 1, ..., NT ,
region of influence for at least one timestep: Dt # (h/U)min .
Note that although the inequality has the appearance of(3.2.16c)
the familiar CFL condition, it is only an accuracy condition
for properly resolving the timescales in the flow. On thewhere the derivatives are approximated by the divided
other hand, within the interior domain, Dt must be checkeddifference rule, and
against the inter-element distances to ensure numerical
stability by maintaining core overlap everywhere and at

I6
x 5 Uy Sxi 6

ht
xi

2
, yi , b, tD zi all times. Since the core radius is set equal to the tile side,

it is reasonable to retain Dt # (h/U)min as the stability
criterion in the domain interior.

2 ONT

j51
c̃y(xj , t)wj Sxi 6

ht
xi

2
, yiDMin(zi , zj), (3.2.16d)

3.3. Exit Boundary Condition

Specification of a suitable exit boundary condition forI6
y 5 Vy Sxi , yi 6

ht
yi

2
, b, tD zi incompressible wall-bounded flows is a nontrivial task in

any numerical method, because of the elliptic nature of
the equations of motion and the effect the arbitrary choice1 ONT

j51
c̃x(xj , t)wj Sxi , yi 6

ht
yi

2 DMin(zi , zj). (3.2.16e)
of the boundary condition can have on the rest of the flow
field. Fortunately, for convection dominated flows the exit
boundary effects remain relatively local and the error sig-The numerical algorithm proceeds as follows: During
nals do not penetrate deeper than one or two characteristiceach timestep, vortex tiles within the layer are first con-
length scales [29]. To date, the most commonly appliedvected according to (3.2.11) and using (3.2.16), thus estab-
boundary condition in vortex methods is the specificationlishing the velocity link between the interior and the
of a uniform potential flux at the exit such that potentialboundary domains. Note that this step is ignored if there
continuity is satisfied on the boundary:are no tiles within the numerical layer, including the very

first timestep. Subsequent to the convection process, new
(uP(xo) ? n)exitvortex tiles are created on the boundary according to

(3.2.4) to satisfy the no-slip boundary condition. The con-
clusion of this process is coincident with the end of the 5 S21

Sexit
D E

­D\­Dexit

uP(xo) ? n dS(xo), xo [ ­D.

(3.3.1)

diffusion step within the interior domain, and the simulta-
neous satisfaction of both the normal flux and the no-slip
boundary conditions. Finally all tiles, old and new, are For high Reynolds number flow in a duct, for example,

where the fully developed velocity profile is nearly flat,diffused inward and normal to the walls according to
(3.2.12)—signifying the end of the computational time- the above condition produces satisfactory results if the

duct length is extended by an extra duct height; for lowerstep. Once a tile jumps into the flow interior, it is con-
verted into a spherical vortex element with volumetric Reynolds numbers an extension of two duct heights is
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safer. However, there are two obvious disadvantages to impact of different numerical parameters on the solution
accuracy, and to demonstrate the ability of the scheme tothis boundary condition: (1) the extra duct length implies

unnecessarily extra computations; (2) a flat potential flux capture complex vortical structures. For this purpose, we
chose a rather simple flow which possesses an analyticalalmost guarantees a slip velocity at the walls circumscribing

the exit surface, which is inconsistent with the applied no- solution, and a more complex flow which has been studied
before using a different numerical approach. We empha-slip condition there.

We introduce here the more physically correct con- size here that being the first test for the method, the flows
were carefully selected such that a true comparison cancept of a fully developed velocity profile at the exit,

(­u ? n/­n)exit 5 0. In what follows, the subscript ‘‘exit’’ is be conducted between the simulation results and other so-
lutions.dropped from all variables for brevity. Decomposing the

exit velocity into its potential and vortical components
yields ­uP ? n/­n 5 2­ug ? n/­n. Furthermore, the three-

4.1. Flow in a Duct
dimensional Laplace equation may be rearranged at the
exit plane, in terms of the local coordinate system, into We present here results from a set of parametric studies

for the case of flow in a duct with square cross section. A
total of nine cases were examined. We chose this particular­2F

­j2 1
­2F

­z2 5 2
­

­n S­F

­nD5
­uP ? n

­n
. geometry because of the availability of an exact solution

for the fully developed velocity profile [54], against which
we verified our results. The Reynolds number based onCombining the last two equations leads to a two-dimen-
the duct height H and uniform inlet velocity Uin was setsional Poisson equation at the exit plane with a Neumann
at 100. The ratio of the duct length Lc to its height mustboundary condition:
satisfy Lc/H $ Re/20 to obtain a fully developed velocity
profile at the exit [55]. Given this condition and the discus-
sion in Section 3.3, the duct dimensions were set at 1 : 1 : 7=2F(xo) 5 2

­ug(xo) ? n
­n

, xo [ ­D, (3.3.2)
to minimize the effect of the exit boundary condition on
the solution. The Reynolds number was chosen so as to=F(x9o) ? n̂ 5 2uP(x9o) ? n̂
ensure that the flow remains laminar and stable, even under
the weak numerical perturbations caused by the random5 2(u(x9o) 2 ug(x9o)) ? n̂, x9o [ ­(­D), (3.3.3)
walk process.

Table I shows the list of all the relevant parameters inE
­(­D)

=F(x9o) ? n̂ dP(x9o)
this study. The tile and boundary element resolutions in
the table refer to the number of rectangular elements per

5 2 E
­D

­ug(xo) ? n
­n

dS(xo), x9o [ ­(­D), (3.3.4) duct wall. The origin is set at a corner of the duct inlet,
and the z coordinate points toward the exit surface. In all
cases, the no-slip boundary condition is satisfied on thewhere ­D is the exit plane, ­(­D) is its boundary, and
walls and the inlet velocity is fixed at Uin 5 1.0. The exitP(x9o) represents the contour enclosing the exit plane; n̂ is
boundary condition is satisfied either by the standard orthe unit outward normal to the boundary of, and in, the
the fully developed exit velocity formulation—as assignedexit plane.
in the table. The initial conditions are set as follows: AtThe Poisson equation can now be solved by a standard
t 5 02 the velocity and the vorticity are zero throughoutfinite element method using the same grid distribution that
the domain. At t 5 01 a potential flow field with a uniformis used in the boundary element section of the solution.
velocity, Uin 5 1.0, is applied to the duct. This sets the slipNote that the equation above does not have a unique
velocity at the duct walls which generates the vorticity fieldsolution in the potential and the assembled matrix is singu-
within the numerical boundary layer.lar. However, the singularity may be removed by the stan-

Figure 2 depicts the rear and side views of five typicaldard penalty method and the arbitrary assignment of the
timeslices from the evolution of the vortex elements andpotential at a point on the exit surface. Given the potential
their velocity vectors, emanating from one of the duct wallsdistribution at the exit, the three-dimensional Laplace
in Case 9. (The sticks represent the velocity vectors andequation (3.1.23) admits a mixed Dirichlet–Neumann
the solid circles depict their origin at the center of theboundary condition, which has a unique solution.
vortex elements.) The transient boundary layer develop-
ment between the flow startup at t 5 01 and the onset of4. RESULTS
stationary state is captured in the first four time frames.
The flow in the last frame is fully developed and is atResults presented in the next two subsections are in-

tended to test the convergence of the method, to show the stationary state, which is confirmed by the familiar bound-
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TABLE I

Number of BEM Tile Boundary
Case BLRP BLTC Dt timesteps resolution resolution condition

1 4 1.5 0.1 300 4 3 24 3 3 21 Std.
2 2 1.5 0.1 300 4 3 24 3 3 21 Std.
3 8 1.5 0.1 300 4 3 24 3 3 21 Std.
4 4 1.0 0.1 300 4 3 24 3 3 21 Std.
5 4 0.5 0.1 600 4 3 24 3 3 21 Std.
6 4 1.5 0.1 300 4 3 24 3 3 21 Ful. Dev.
7 4 0.5 0.1 600 4 3 24 3 3 21 Ful. Dev.
8 4 1.5 0.01 3000 4 3 24 3 3 21 Std.
9 4 1.5 0.1 300 8 3 35 7 3 32 Std.

ary layer envelope. The vorticity vectors for the displayed grows in time and space to fill one quarter of the duct at
the exit, and the thin numerical boundary layer, which iselements point into the paper, and those from the opposite

wall point out of the paper. Similarly, the vectors from the fixed, is readily evident in the figure.
Cases 1 through 3 represent a parametric study of theside walls are directed such that they form loops with the

former pairs. The tiles in the numerical boundary layer, convergence properties of the numerical scheme as a func-
tion of BLRP, whereas Cases 1, 4, and 5 represent a similaroccupying the blank space between the elements and the

lower wall, are not displayed to avoid unnecessary clutter. study as a function of BLTC. (Case 1 is the baseline case.)
Figures 3a and 3b depict the respective time histories forThe distinction between the physical boundary layer, which

FIG. 2. Rear and side views of vortex element trajectories originated at the bottom wall. From top to bottom: t 5 0.1, 0.5, 2.0, 10.5, 21.0.
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averaging the instantaneous solutions over several time-
steps. For the current comparison, the results from times
20.0 through 30.0 were sampled at five timestep intervals,
and averaged over a total of 20 samples. Recall that increas-
ing the value of BLRP is analogous to concentrating more
grid points in the vicinity of the walls, and is thus expected
to improve the field resolution there. However, increasing
BLRP from 2 to 8 does not improve the velocity field
within the domain appreciably and, as the figure shows, the
profiles are almost indistinguishable at z 5 4.5. Previous
numerical experiments with two- and three-dimensional
boundary layer studies suggest that BLRP values as large
as 20 may be necessary to obtain sufficiently converged
solutions [22, 50]. However, considering the commensurate
increase in the number of elements and tiles, which is
approximately 8100 according to the results in Fig. 4, fur-
ther increase in BLRP is not computationally justifiable.
It must be added here that the velocity profiles obtained
in Case 9 are also very close to those of Case 1, and increas-
ing the tile and boundary element resolutions improved
the duct flow field only slightly.

Figure 6 depicts the convergence as a function of BLTC
for the steady state streamwise velocity profile, at four
locations on the z 5 4.5 surface. Time averaging of the
velocity profiles is performed from 20.0 through 30.0 for
Case 4, and from 20.0 through 50.0 for Case 5. It is clear
from the figure that BLTC has a significant influence on
convergence. Indeed, for the duct problem, it is the most
effective parameter in Table I for obtaining fast conver-
gence. Interestingly, all previous parametric studies have
concentrated on the variation of the tile resolution, BLRPFIG. 3. Total number of vortex elements and tiles versus time.
and the timestep [22, 50], setting BLTC equal to 1.5 based
on statistical reasoning. In particular, the reduction in the
timestep has traditionally been assumed to improve thethe total number of vortex elements and tiles. In all cases

the number of elements reach their plateau at t , 10, tile solution by (1) increasing the time integration accuracy
during the convection and diffusion steps, and (2) decreas-signifying the end of the transient between the flow startup

and the onset of stationary state. Also note that the transi-
tion period to steady state increases with the increase in
BLRP; however, it is independent of BLTC and stays
unchanged at t P 6. It is not obvious why the plots in Fig.
3b display such strong oscillations as BLTC is reduced;
however, their existence suggests that longer runs are nec-
essary to filter out the effect of the oscillations from the
steady state solution. Figure 4 is the log–log plot of the
average number of vortex elements and tiles at steady state
versus BLRP and BLTC, where averaging was performed
beyond t 5 10. Note that a doubling of BLRP increases
the total number of elements in the field by 20.87 only,
which is roughly equal to 2Ï3/2. Similarly, reducing BLTC
by a factor of 2 increases the number of elements by 20.46

or roughly Ï2.
Figure 5 depicts the steady state streamwise velocity

profile as a function of BLRP at four locations on the FIG. 4. Stationary state number of vortex elements and tiles versus
BLRP and BLTC.z 5 4.5 surface. The steady state flow field is obtained by
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FIG. 5. Effect of BLRP on the streamwise velocity at z 5 4.5.

ing the noise level due to the random walk simulation of condition, and only four boundary elements per width to
satisfy the no-flux condition. Second, note that results fromdiffusion. However, while these assessments are correct,

our experiments with BLTC suggest that the primary con- Cases 5 and 8 are similar, proving our suggestion that, all
else being equal, convergence is primarily controlled by thetribution of the timestep reduction to the solution accuracy

is the reduction in the numerical boundary layer thickness, numerical boundary layer thickness and not the timestep or
BLTC, individually. Also note that as a domain decompo-which in turn improves the validity of the assumptions

behind the Prandtl approximation. sition approach, in which essentially different equations
are integrated in different domains—the Navier–StokesTo verify our conclusion above, we devised Case 8 such

that its numerical boundary layer thickness is almost equal equations in the interior and the Prandtl approximation
near the solid walls—it is important to establish the boundto that of Case 5. Note that, compared to the baseline case,

the timestep in Case 5 is kept unchanged while its BLTC on the domain within which the latter can replace the
former. Figure 5 shows that no matter how refined theis reduced; whereas the timestep in Case 8 is reduced as

its BLTC is kept unchanged. Figure 7 shows the total resolution of the vorticity in the near wall zone is, if the
extent of this zone normal to the wall is ‘‘large,’’ the errornumber of vortex elements and tiles as a function of time,

for Cases 5, 7, and 8. The statistically good match between cannot be forced below a certain rather large bound. On
the other hand, Fig. 6 shows that even with relatively coarsethe element histories of Cases 5 and 8 is a first-order indica-

tion of the match between the two flow fields. Figure 8 discretization of the near wall vorticity, the error is reduced
substantially as the numerical boundary layer (or the do-depicts the steady state streamwise velocity profiles at four

locations on the z 5 4.5 surface, obtained by Cases 5 and main within which the Navier–Stokes equations are ap-
proximated using the Prandtl-type equations) is made8 and the exact solution. The time averaging of the velocity

profiles for Case 8 is performed from 20.0 through 30.0. smaller! This is also in agreement with an error analysis of
the discretization which would be used to show consistency.First, note that the simulation results compare very well

with the exact solution, considering that only three tiles are The total error in the approximation is a function of the
boundary layer thickness (BLTC) and the vorticity resolu-used per width of the duct to satisfy the no-slip boundary
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FIG. 6. Effect of BLTC on the streamwise velocity at z 5 4.5.

tion parameter (BLRP). As the second error is reduced beyond which the two solutions diverge from each other.
Figure 10 shows the effect of the exit boundary conditionby increasing BLRP, the total error would be bounded by

the first which is controlled by BLTC. on the exit velocity profiles obtained from Cases 5, 7, and
8. The velocity profiles from Cases 5 and 8 indicate thatFigure 9 represents the effect of sample size on the

steady state velocity profile at four locations on the reducing the timestep improves the exit velocity only
slightly. On the other hand, the relative accuracy of thez 5 4.5 surface for Case 5. For all three time periods—10,

20, and 30—the sampling was performed at every five
timesteps. Note that, as the sample size is increased, the
velocity profiles converge monotonically toward a steady
state solution. Since symmetry is not enforced at the vortic-
ity evolution level, some asymmetry is observed in the
profiles which improves with increasing sample size. The
absence of an explicit method to guarantee the solenoi-
dality of vorticity may be another potential source of asym-
metry in the velocity profile.

Cases 6 and 7 were devised to compare the proposed
fully developed exit boundary condition with the standard
boundary condition applied in Cases 1 and 5, respectively.
First, note that, as shown in Fig. 7, the time histories of
the number of particles and tiles are in good statistical
agreement for Cases 5 and 7, which is a first-order indica-
tion that the velocity fields are similar in the two cases. A
survey of the velocity profiles at selected streamwise sta- FIG. 7. Effect of the numerical boundary layer thickness on the num-

ber of vortex elements and tiles.tions verifies the similarity of the flow field up to z 5 5.0,
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FIG. 8. Comparison of the streamwise velocity profiles obtained by the current method and the exact solution.

fully developed exit boundary condition is clearly evident we demonstrate some of the salient features of the vortex-
boundary element method and its ability to capture three-in the figure. Consequently, the benefit of applying our
dimensional vortical flow structures that evolve due toproposed exit condition is a 30% reduction in the length
separation at sharp edges. The Reynolds number basedof the computational domain for this particular geometry,
on the cube side, a, and uniform inlet velocity, Uin , wasand a correspondingly reduced computational cost. (Re-
set at 100. The length and velocity scales were normalizedsults obtained from the comparison of Cases 1 and 6 led
by a and Uin , respectively. The cube and the duct wereto the same conclusions and will not be presented in this

paper.) aligned concentrically, and their walls were positioned nor-
The test results presented so far establish the numerical mal to each of the three coordinate directions. The origin

convergence of the method in the case of a rather simple, was set at the cube center, with the z coordinate pointing
but well defined flow. They show the impact of the time- in the streamwise direction toward the exit surface. The
step, the resolution of the wall discretization, and the reso- dimensions of the confining duct in the x : y : z directions
lution of the discretized vorticity within the numerical were set at 16 : 16 : 8, respectively, and the inlet plane was
boundary layer on the accuracy of the solution. This is placed at z 5 22.5. To discretize the potential flow,
significant, given that for more complex three-dimensional 4 3 4 and 10 3 10 uniformly distributed boundary elements
high Reynolds number flows it is rather difficult to establish were used on each of the six faces of the confining duct
such convergence. In the next section, we demonstrate the and the cube, respectively; 8 3 8 uniformly distributed
performance of the method in a more complex flow. tiles were used on each face of the cube to satisfy the no-

slip boundary condition. For computational simplicity,
4.2. Flow over a Cube we considered free-slip boundary condition for the con-

fining duct; therefore, no tiles were generated on the ductIn this section, we present results from an example of
impulsively started flow over a cube confined in a duct walls. Additionally, we set Dt 5 0.05, BLTC 5 1.5, and

BLRP 5 3. The inlet velocity boundary condition waswith square cross section. The detailed analysis of the simu-
lation of this flow is beyond the scope of this paper; here maintained at Uin 5 1.0. The standard exit boundary condi-
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FIG. 9. Effect of sample size on the stationary state velocity profile at z 5 4.5.

with respect to the plane of symmetry of the cube. Note thattion was applied for this problem. The no-flux boundary
condition was enforced on all cube walls, as well as the the sharp edges of the cube do not cause flow separation at
side walls of the duct. At t 5 01, a uniform velocity, the upstream side of the cube. This is verified by a high
Uin 5 1.0, was applied throughout the field to start the resolution finite-difference simulation of flow over a cube
impulsive motion. [51, 52], as well as a finite-volume simulation of flow over

Figure 11 depicts a representative sequence from the a square rod [18], at the same Reynolds number.
initial stages of flow development within a slice of volume The formation of a very weak near-field wake behind
with 0.25 thickness around the plane of symmetry at the cube is evident in Fig. 11. The length of the aft-end
x 5 0.0—the plane of symmetry of the cube. The solid recirculation bubble at t 5 2.0 is approximately equal to
circles denote the location of the vortex elements and the half the cube width and corroborates well with the value
line segments originating from them represent the velocity of 0.52 obtained by Raul et al. [52]. Figure 12 depicts the
of the elements, normalized by the instantaneous maxi-

corresponding mean centerline axial velocity behind themum speed in the field. Using the instantaneous maximum
cube, obtained by the present method and the finite-differ-in the normalization helps identify the relative strength of
ence simulation by Raul and Bernard [51]. Consideringvarious flow regions and processes in the domain in each
the relatively low resolution of the present simulation, thetime frame. Notice once again that the vortex elements
two profiles compare very well. In Fig. 11, notice the pres-near the cube surfaces are separated from them by fixed-
ence of a mild asymmetry in the wake, especially at t 5size thin blank spaces. These are the numerical boundary
2.0. This is caused by the random walk perturbation, whichlayers where the Prandtl approximation is used to evaluate
generates a random noise-level disturbance in the field.the evolution of the wall-generated vortex tiles. (The tiles
Although it is not shown here, beyond t 5 2.0, the inherentare not shown in the figure to avoid clutter.) On the other
instability of the wake gives rise to further growth of thehand, the envelopes of the vortex elements spanning over
observed asymmetry of the aft-end bubbles and developsthe upper and lower cube surfaces demonstrate the initia-
an unsteady wake with an approximate period of 7 [24].tion and growth of the physical boundary layer. The latter

reaches a quasi-stationary state by t 5 2.0 and is symmetric The predicted stationary state drag coefficient of 2.14
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FIG. 10. Effect of the exit boundary condition on the velocity profile at the exit surface.

compares well with the value of 1.95 obtained by Raul et component. Raul et al. [52] do not provide information on
the structure of the flow near the cube edges at Re 5 100.al. [52]. We obtained the drag by applying the integral

form of the momentum balance between the inlet and the However, Raul and Bernard [51] report the existence of
three-dimensional flow structures in the downstream halfz 5 2.5 surfaces. The pressures at the two stations were

assumed to be equal in this computation, since, as shown of the cube edges at Re 5 2000, which are in qualitative
agreement with our prediction.in Fig. 12, the velocity behind the cube is fairly well recov-

ered at z 5 2.5. Details of these computations will be
published elsewhere. 5. CONCLUSION

Figure 13 depicts the two-dimensional, stationary state
velocity vector projections on selected xy planes in the A hybrid random vortex-boundary element method has

been developed for the grid-free simulation of unsteadyvicinity of the cube, viewed from the rear of the cube into
the negative z direction. The flow in the upstream half of incompressible viscous flow inside three-dimensional do-

mains. In this approach, the velocity–vorticity formulationthe cube, z , 0, is essentially in the streamwise direction.
In the downstream half of the cube, z . 0, small and weak of the Navier–Stokes equations is adopted. The Lagran-

gian vortex method is utilized to evaluate the convectionvortical flow structures begin to form at both edges of each
face and grow in size and strength in the positive z direction and stretch of the vorticity in an unbounded domain, and

the random walk method is used to simulate its diffusion.toward the trailing edge of the cube. The development of
the two counterrotating vortical flow structures near each To account for the boundary effects, a potential flow is

imposed on the latter such that the proper normal fluxedge of the cube is a manifestation of the existence of a
pair of oppositely signed streamwise vortices there. Notice, boundary condition is satisfied. The boundary element

method is used to solve the Neumann problem that definesby comparing the scale of the vortical flow vectors with
that at the upstream face of the cube, that the rotations this potential flow. The no-slip boundary condition is satis-

fied by generating vortex tiles at the solid walls. Within aare very weak and that the transverse velocity components
are an order of magnitude smaller than the streamwise thin user-specified region near the boundary, the evolution
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FIG. 12. The axial velocity behind and on the centerline of the cube.

FIG. 11. The initial stages of wake development within a volume of
thickness 0.25, with its plane of symmetry lying on the x 5 0 plane.

of the vortex tiles is prescribed by simplified Prandtl equa-
tions. Beyond this region, the tiles are converted to spheri-
cal vortex elements.

The accurate evaluation of the potential velocity used
to impose the normal flux boundary condition, and its
gradients near the walls is very critical to the success of
three-dimensional vortex simulations. To this end, we have
developed a boundary element method to obtain the solu-
tion of the ill-posed internal Neumann problem, as well as
to evaluate the potential velocity and its gradients near
the boundary, accurately. In addition, the solution algo-
rithm for the Prandtl equation was extended to allow the
interaction among unequally sized tiles. Furthermore, a
new formulation was developed for imposing the fully de-
veloped flow condition at the exit plane.

The numerical convergence and the accuracy of the
method were demonstrated using the example of flow in
a duct with square cross section at Re 5 100, by comparing

FIG. 13. Stationary state velocity projections on selected xy planes.the predictions with the exact solution. For the range of
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